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1. Introduction

In this paper we present several new results on the one-loop structure of quantum field

theories in Anti-de Sitter space. Our goal is to compute the Euclidean partition function

Z =

∫

Dφe−g−2S(φ) (1.1)

of a free quantum field φ propagating in a fixed background M which is locally Anti-de

Sitter (AdS). We have included an explicit factor of g−2 (proportional to 1/~) in front of

the action. In this paper we will focus on the three dimensional case. As we are computing

a Euclidean partition function, the metric of M will be locally Euclidean AdS3, which is 3-

dimensional hyperbolic space H3. Any locally H3 space M is either H3 itself, or a quotient

of H3 by some discrete group Γ. For example, if we consider Eulcidean AdS3 with the
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identification tEuclidean ∼ tEuclidean +β, then (1.1) is the partition function of Thermal AdS.

Other examples include the Euclidean BTZ black hole and its higher genus generalizations.

We will consider the case where the field φ is either a scalar, a U(1) gauge field or a

linearized metric perturbation. The path integral (1.1) may be expanded around a classical

solution φ0 to the equations of motion as

logZ = −g−2S(0) + S(1) + g2S(2) + . . .

Here S(0) = S(φ0) is the action of the classical solution, and S(i) denotes the correction to

this saddle point action at ith order in perturbation theory. The goal of this paper is to

compute the one loop action S(1) expanded around the classical vacuum solution φ = φ0

for any locally hyperbolic space. For gauge fields and metric perturbations this calculation

is quite technical, although the end result — described in sections 3, 4 and 5 below — is

relatively simple.

Perhaps the most interesting application of the results described above is the problem of

three dimensional quantum gravity with a negative cosmological constant. The Euclidean

action of the theory is

S = − 1

16πG

∫

d3x
√
g

(

R+
2

ℓ2

)

(1.2)

where the length ℓ is related to the cosmological constant Λ = −2/ℓ2. Solutions to the

equations of motion are metrics of constant negative curvature R = −6/ℓ2. The theory

has a single dimensionless coupling constant, k = ℓ/16G. We will use units where ℓ = 1.

Our goal is to compute the partition function of quantum gravity with asymptoti-

cally AdS boundary conditions at a given temperature β−1 and angular potential θ. The

canonical ensemble partition function at finite β and θ can be thought of as the Euclidean

functional integral

Z(τ) =

∫

∂M=T 2

Dge−kS(g) (1.3)

where we integrate over metrics whose conformal boundary a torus T 2 with modular pa-

rameter τ = 1
2π (θ+ iβ). In writing (1.3) we have pulled out an overall factor of k from the

action. At leading order in k, this partition function is found by computing the classical

action of a Euclidean solution to the equations of motion. The simplest such solution is

just Euclidean AdS space, with periodically identified time coordinate. The contribution

of this geometry to the partition function can be expanded in perturbation theory

Zsaddle(τ) ∼ e−kS(0)+S(1)+k−1S(2)+... (1.4)

The classical action S(0) is (see e.g. [14])

e−kS(0)
= |q|−2k (1.5)

where q = e2πiτ .

The one loop correction S(1) was derived indirectly in [2, 3], following the logic of

Brown and Henneaux [5]. Brown and Henneaux argued that the symmetry group relevant

to general relativity with asymptotically AdS3 boundary conditions is two copies of the
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Virasoro algebra. This means that the partition function (1.4) must be the character of

some representation of the Virasoro algebra:

Zsaddle(τ) = Tr qL0 q̄L̄0 (1.6)

Since the operators L0 + L̄0 and L0− L̄0 are identified with energy and angular momentum

operators, respectively, this is just the usual expression for a canonical ensemble partition

function at fixed temperature and angular potential. The classical action (1.5) is interpreted

as the contribution to (1.6) of a ground state |0〉 of weight L0 = L̄0 = −k. The trace

in equation (1.6) is over the Hilbert space of perturbative excitations around this AdS3

background, and the other states appearing in this trace will give the subleading corrections

appearing in (1.4). These states are the Virasoro descendants of the ground state, found

by acting on |0〉 with some combination of the Virasoro operators L−n. Including these

states in the trace gives

Zsaddle = |q|−2k
∞
∏

n=2

1

|1 − qn|2 (1.7)

The additional terms appearing in (1.7) are identified as eS
(1)

.1

In this paper we will compute the one-loop partition function (1.7) directly. In partic-

ular, we will compute the one-loop determinant det∆(2), where ∆(2) is the kinetic operator

for linearized graviton fluctuations around the background metric. In computing the par-

tition function, we must also include the Fadeev-Popov determinants arising due to gauge

fixing. These involve the determinants of a scalar Laplacian ∆(0) and a vector field Lapla-

cian ∆(1). Although the intermediate stages of this computation are quite complicated,

the final answer takes a simple form:

e−kS(0)+S(1)
= e−kS(0) det∆(1)

√
det ∆(0) det∆(2)

= |q|−2k
∞
∏

n=2

1

|1 − qn|2 (1.8)

exactly as was argued above using more indirect arguments. This computation demon-

strates directly that the structure of a conformal field theory emerges from quantum gravity

in Anti-de Sitter space.

We may apply the one-loop results derived in this paper to other locally hyperbolic

geometries, in addition to thermal Anti-de Sitter space. These geometries are quotients of

the form H3/Γ, where Γ is a discrete group which acts freely on H3. These geometries may

be thought of as higher genus generalizations of the BTZ black hole; they are Euclidean

continuations of the “wormhole” solutions of [16]. The conformal boundary of one of these

Euclidean geometries is a genus g ≥ 2 Riemann surface. If one could compute exactly the

partition function of quantum gravity on these backgrounds, this would determine uniquely

the operator product expansion of the CFT dual to pure gravity in Anti-de Sitter space.

We are able to compute the one loop part of the action, which is a first step towards this

ambitious goal.

1In fact, this expression must be one loop exact, because there is a unique representation of the Virasoro

algebra with lowest weight. So there is no possible modification of the formula (1.7) — aside from a

renormalization of the coupling k — which is consistent with the Virasoro symmetry.

– 3 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
7

Before discussing the technicalities of our computations, we will start by outlining our

strategy, which utilizes the heat kernel approach to the computation of one-loop determi-

nants in curved space-time.

1.1 The heat kernel method

Our goal is to compute the partition function

Z =

∫

Dφe−g−2S(φ)

of a free quantum field φ to one loop in the coupling g. Here φ denotes a scalar, vector

or linearized metric field. Since φ is a free field, the computation is — in principle —

completely straightforward. We start by writing the action as2

S(φ) =

∫

M
d3x

√
g φ∆φ

where ∆ is a second order differential operator. Of course, if φ is a gauge or graviton field

then ∆ will have a complicated tensor structure, which we suppress here. As an operator

on the space of normalizable functions on M, ∆ will in general have both continuous and

discrete spectrum of eigenvalues. For example, if M is compact, then ∆ has a discrete set

of eigenvalues λn, in terms of which the one loop correction is

S(1) = −1

2
log det(∆) = −1

2

∑

n

log λn . (1.9)

The manifolds M considered in this paper are typically non-compact and homogeneous,

on which ∆ also has a continuous spectrum. This gives a divergent contribution to (1.9)

proportional to the volume of M. This divergence can be absorbed into a local countert-

erm, which describes the renormalization of the cosmological constant (or alternatively of

Newton’s constant) at one-loop.

In practice, the computation of S(1) is quite difficult, especially for gauge and graviton

fields. The most straightforward procedure is to find a complete basis of normalizable

eigenfunctions {ψn} obeying ∆ψn = λnψn and compute the sum (1.9) directly. This is a

formidable task. Instead, we will use a heat kernel approach. The heat kernel K(t, x, y) is

a function of two points x and y on M, as well as an auxiliary “time” variable t. It can

be defined as

K(t, x, y) =
∑

n

e−λntψn(x)ψn(y) (1.10)

where, as above, we are suppressing the complicated tensor structure. In writing this we

have normalized the eigenfunctions ψn so that

∑

n

ψn(x)ψn(y) = δd(x, y),

∫

M
d3x

√
g ψn(x)ψm(x) = δnm

2We are neglecting total derivatives, which will not be important here.
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The trace of the heat kernel
∫

M
d3x

√
g K(t, x, x) =

∑

n

e−λnt

is a function of t which encodes information about the spectrum of ∆. For example, we

may compute

S(1) = −1

2

∑

n

log λn =
1

2

∫ ∞

0+

dt

t

∫

M
d3x

√
gK(t, x, x) .

The advantage of the heat kernel method is that K(t, x, y) satisfies the differential

equation

(∂t + ∆x)K(t, x, y) = 0 (1.11)

with boundary conditions at t = 0

K(0, x, y) = δ(x, y) (1.12)

where δ(x, y) is the appropriate delta function on M. In practice, we may define the

heat kernel as the unique solution to the differential equation (1.11) with boundary condi-

tions (1.12). This definition is more easily computable than the original definition (1.10).

In particular, since hyperbolic space H3 is a symmetric space, it is possible to solve this

differential equation, including the complicated tensor structure. This is the computation

described in section 2. The resulting one-loop determinant (1.1) is computed in section 3.

The heat kernel method is particularly well adapted to the computation of the one

loop partition function on quotient spaces M = H3/Γ. Let us start by imagining that we

have found the heat kernel KH3(t, x, y) on H3. The differential equation (1.11) is linear, so

we may find the heat kernel on H3/Γ using the method of images

KH3/Γ(t, x, y) =
∑

γ∈Γ

K(t, x, γy) (1.13)

For example, thermal AdS and the BTZ black hole are both quotients of AdS by Z. The

Euclidean space M = H3/Z turns out to be a solid torus endowed with a metric of constant

negative curvature. In this case the sum (1.13) is a relatively simple sum over Z which can

be computed. This computation is described in section 4.

For other choices of the group Γ, the Euclidean space H3/Γ is more complicated. We

are interested in cases where the group Γ acts freely on H3. In this case H3/Γ is a smooth

manifold of constant negative curvature, and the conformal boundary of H3/Γ is a Riemann

surface of genus g ≥ 2. For some choices of Γ, H3/Γ is a solid handlebody of genus g ≥ 2

endowed with a metric of constant negative curvature. For other choices, the geometry

of H3/Γ is more complicated. There is a rich mathematical theory — that of the Selberg

trace formula and its generalizations — where the sum over elements γ ∈ Γ is used to

compute the spectrum of differential operators on Hd/Γ. For scalar and vector fields, our

computations precisely reproduce the results of the Selberg trace formula (see e.g. [8] and

references therein). To our knowledge, the Selberg trace formula has not been successfully
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generalized to the graviton case.3 Our computation may therefore be viewed as a brute

force derivation of the Selberg trace formula in this context. This computation is described

in section 5.

2. Heat kernels in hyperbolic space H3

In this section we compute the heat kernel for scalar, gauge and graviton fields in Euclidean

Anti-de Sitter space H3.

2.1 Scalar fields

We consider a scalar field φ of mass m in hyperbolic 3-space H3. The action is

S =
1

2

∫

d3x
√
g
(

∂µφ∂
µφ+m2φ2

)

(2.1)

=
1

2

∫

d3x
√
gφ
(

−∇2 +m2
)

φ (2.2)

where ∇2 = ∇µ∇µ is the scalar Laplacian on H3. In the second line we have discarded

a total derivative term, which vanishes provided φ obeys suitable boundary conditions at

the boundary of H3.

The heat-kernel K(t, x, x′) is a solution of the differential equation

(∇2
x −m2)K(t, x, x′) = ∂tK(t, x, x′) (2.3)

where x, x′ are coordinates on H3 and ∇2
x is the Laplacian acting on x. The boundary

condition on K(t, x, x′) at t = 0 is

K(0, x, x′) = δ3(x, x′) , (2.4)

where δ3(x, x′) = 1√
g(x)

δ3(x− x′).

We will use the following metric on H3

ds2 = gµνdx
µdxν =

dy2 + dzdz̄

y2
, (2.5)

where y > 0 and z is a complex coordinate. Since the space H
3 is maximally symmetric,

the heat kernel K(t, x, x′) will depend on x and x′ only through the geodesic distance

r(x, x′) ≡ arccosh(1 + u(x, x′)) , (2.6)

where we have defined the “chordal distance”

u(x, x′) ≡ (y − y′)2 + |z − z′|2
2yy′

. (2.7)

3This was attempted for AdS3 in [7], whose result differs from ours. We believe this is due to an error

in the computation of [7].
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Acting on a function of the geodesic distance r(x, x′), the scalar Laplacian is

∇2 = u(u+ 2)∂2
u + 3(u+ 1)∂u = ∂2

r + 2coth r ∂r. (2.8)

It is straightforward to solve the differential equation (2.3) subject to the boundary

condition (2.4). The answer for the scalar heat kernel on H3 is

KH3(t, r) =
e−(m2+1)t− r2

4t

(4πt)3/2

r

sinh r
. (2.9)

This was first described in reference [9] (see also [10]).

2.2 Vector fields

We now consider a U(1) gauge field Aµ on H3, with action

S =
1

4

∫

d3x
√
gFµνF

µν (2.10)

In order to study the heat kernel, it is necessary to fix a gauge. We will work in Feynman

gauge, where the gauge fixed action is

S =

∫

d3x
√
g

(

1

4
FµνF

µν +
1

2
(∇µA

µ)2
)

(2.11)

=
1

2

∫

d3x
√
gAµ

(

−gµν∇2 +Rµν
)

Aν (2.12)

As in the scalar case, in the second line we have discarded a total derivative term.

This gauge fixing procedure introduces Fadeev-Popov ghosts b and c, which are anti-

commuting scalar fields. Their action is

Sghost = −
∫

d3x
√
g b∇2c (2.13)

The heat kernel for these ghost fields can be computed exactly as in section 2.1.

The heat-kernel for a U(1) gauge field on H3 is a bitensor Kµν′(t, x, x′) which solves

the differential equation

∆µ
νKνν′(t, x, x′) = −∂tKµν′(t, x, x′) (2.14)

where ∆ν
µ is the gauge field kinetic operator appearing in the action (2.12)

∆µ
ν = −δµν∇2 +Rµ

ν = −(∇2 + 2)δµ
ν . (2.15)

The boundary condition at t = 0 is

Kµν′(0, x, x′) = gµν′(x)δ3(x, x′) . (2.16)

As in the scalar case, since H3 is a maximally symmetric space the heat kernel is

a function only of the geodesic distance r(x, x′), or alternatively of the chordal distance

– 7 –
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u(x, x′) defined in (2.7). This implies that Kµν′ can be written as a linear combination

of ∇µu∇µ′u and ∇µ∇µ′u, which form a basis for the space of (1, 1) bitensors constructed

out of u(x, x′). Appendix A lists a few useful identities involving u(x, x′) and the various

tensors constructed from u(x, x′) (see also [6]). Using the properties listed in appendix A

it follows that the heat kernel can be written as

Kµν′(t, x, x′) = F (t, u)∂µ∂ν′u+ ∂µ∂ν′S(t, u) , (2.17)

and that

(

∇2 + 2
)

Kµν′ =
(

∇2F + F
)

∂µ∂ν′u+ ∂µ∂ν′

(

∇2S − 2

∫ ∞

u
F (t, v)dv

)

. (2.18)

The heat equation (2.14) becomes

(

∇2 + 1
)

F (t, u) = ∂tF (t, u)

∇2S(t, u) − 2

∫ ∞

u
F (t, v)dv = ∂tS(t, u) .

(2.19)

and the boundary condition (2.16) becomes

F (0, u) = −δ3(x, x′) ,
∂uS(0, u) = u∂2

uS(0, u) = 0 .
(2.20)

The second condition ensures that the terms in (2.17) involving derivatives of S will not

contain delta functions at t = 0.4 The solution is5

F (t, r) = − e−
r2

4t

(4πt)3/2

r

sinh r
,

S(t, r) =
4

(4π)3/2

e−
r2

4t

sinh r

√
t

∫ 1

0
dξ e−t(1−ξ)2 sinh rξ .

(2.21)

Although we have just considered massless vector fields, it is straightforward to gener-

alize these results to find the heat kernel of a massive vector field. The differential operator

∇2 + 2 appearing in (2.15) is replaced by ∇2 + 2 −m2. The heat kernel takes exactly the

same form as in (2.21), except multiplied by a factor of e−m2t; this is the same exponential

factor appearing in the massive scalar heat kernel (2.9).

2.3 Graviton

We will now consider a linearized graviton perturbation hµν around an H3 background.

The Einstein-Hilbert action for gravity with a negative cosmological constant is

SGR = − 1

16πG

∫

d3x
√
g(R+ 2) . (2.22)

4More precisely, ∂uS and ∂2
uS are delta functions in r at t = 0 which integrate to zero when multiplied

by the measure r2dr, so can be ignored.
5The equation for S is solved by Fourier transforming the equation for sinh rS(r) with respect to r.
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The form of the kinetic term for the metric perturbation hµν will depend on the choice of

gauge. We will use the gauge of [12], where we add to (2.22) the gauge fixing term

SGF =
1

32πG

∫

d3x
√
g∇µ

(

hµσ − 1

2
gµσh

)

∇ν

(

hν
σ − 1

2
δν

σh

)

. (2.23)

It is convenient to separate out the traceless and pure trace parts of hµν

φµν = hµν − 1

3
gµνh

ρ
ρ, φ = hρ

ρ (2.24)

The gauge fixed action is

SGR+SGF =− 1

32πG

∫

d3x
√
g

{

1

2
φµν

(

gµρgνσ∇2+2Rµρνσ
)

φρσ−
1

12
φ
(

∇2−4
)

φ

}

(2.25)

Note that the kinetic term for the trace mode φ has the wrong sign. To deal with this

mode, we will use the standard procedure of [13]: we Wick rotate φ → iφ, so that the

kinetic term becomes positive definite. Then φ is just a scalar field with mass m2 = 4; the

heat kernel for such a field was described in section 2.1.

As above, the gauge-fixing procedure requires us to introduce a Fadeev-Popov ghost

field, which in this case is a complex valued vector ηµ. The action is

Sghost =
1

32πG

∫

d3x
√
g η̄µ

(

−gµν∇2 −Rµν
)

ην (2.26)

The heat kernel for this ghost field is that of a vector field with mass m2 = 4, which is e−4t

times the heat kernel of a massless vector field in Feynman gauge described in section 2.2.

We will now compute the heat kernel Kµν,µ′ν′(t, x, x′) for φµν . This heat kernel equa-

tion is

∆ρσ
µνKρσ,µ′ν′(t, x, x′) = ∂tKµν,µ′ν′(t, x, x′) (2.27)

where ∆ρσ
µν is the differential operator appearing in (2.25)

∆ρσ
µν = δρ

µδ
σ
ν∇2 + 2R ρ σ

µ ν = δρ
µδ

σ
ν

(

∇2 + 2
)

(2.28)

The boundary condition at t = 0 is

Kµν,µ′ν′(0, x, x′) =
1

2

(

gµµ′gνν′ + gµν′gνµ′ − 2

3
gµνgµ′ν′

)

δ3(x, x′) (2.29)

Finally, since φµν is traceless, the heat kernel will be traceless as well:

gµνKµν,µ′ν′(t, x, x′) = gµ′ν′

Kµν,µ′ν′(t, x, x′) = 0 (2.30)

As in the scalar and vector cases, the heat kernel on H3 must be a function of the

chordal distance u(x, x′). There are six (2,2) bitensors which can be written as a function

of u(x, x′); they are described in appendix A (and also [6]). From this fact, along with the
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symmetry of Kµν.µ′ν′ under x → x′, it follows that the heat kernel may be expressed as a

linear combination of the following five terms

KH3
µν,µ′ν′(t, x, x

′) = (∂µ∂µ′u∂ν∂ν′u+ ∂µ∂ν′u∂ν∂µ′u)G(t, u) + gµνgµ′ν′H(t, u)

+∇(µ

[

∂ν)∂(µ′u∂ν′)uX(t, u)
]

+ ∇(µ′

[

∂ν′)∂(µu∂ν)uX(t, u)
]

+∇(µ

[

∂ν)u∂µ′u∂ν′uY (t, u)
]

+ ∇(µ′

[

∂ν′)u∂µu∂νuY (t, u)
]

+∇µ [∂νuZ(t, u)] gµ′ν′ + ∇µ′ [∂ν′uZ(t, u)] gµν . (2.31)

where G, H, X, Y , and Z are five functions of t and u(x, x′).
In terms of these functions the heat equation (2.27) becomes

∇2G = ∂tG,

∇2H − 4H − 4G− 8(u+ 1)

∫ ∞

u
G(t, v)dv = ∂tH,

∇2X + 2(u+ 1)∂uX + 4X + 4(u+ 1)Y + 4G = ∂tX, (2.32)

∇2Y + 6(u+ 1)∂uY + 2∂uX + 7Y = ∂tY,

∇2Z + 2(u+ 1)∂uZ − Z + 2Y + 4

∫ ∞

u
G(t, v)dv = ∂tZ.

The boundary conditions (2.29) are

G(0, u) =
1

2
δ3(x, x′) ,

H(0, u) = −1

3
δ3(x, x′) ,

X(0, u) = u∂uX(0, u) = 0 ,

uY (0, u) = u2∂uY (0, u) = 0 ,

Z(0, u) = u∂uZ(0, u) = 0 .

(2.33)

The traceless condition (2.30) is

2G+ 5X + 2(u+ 1)∂uX + 2u(u + 2)∂uY + 7(u+ 1)Y + 3∂uZ = 0, (2.34)

2G+ 3H + (u2 + 2u+ 2)X + u(u+ 1)(u+ 2)Y + 6(u+ 1)Z + u(u+ 2)∂uZ = 0.

The solution of these equations is somewhat involved. The first two equations in (2.27)

are solved by

G(t, u) =
e−

r2

4t
−t

2(4πt)
3
2

r

sinh r
,

H(t, u) =
e−

r2

4t
−5t

2(4πt)
3
2

(

1

3
− e4t

)

r

sinh r
− e−

r2

4t
−t
√
t

2π
3
2 sinh r

∫ 1

0
dξe−4t(1−ξ)2 sinh(2rξ) (2.35)

To solve for X and Y , it is useful to define the function V (t, u) by

∂uV (t, u) = X + 2

∫ ∞

u
Y (t, v)dv (2.36)
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The heat kernel equations (2.27) imply that

∇2V − 3V − 4

∫ ∞

u
G(t, v)dv = ∂tV. (2.37)

which is solved by

V (t, u) = − e−
r2

4t

√
t

2π
3
2 sinh r

∫ 1

0
dξe−t(2−ξ)2 sinh(rξ).

The solution for Y (t, u) is simplest to describe in terms of its triple integral in u. If we

define Ỹ (t, u) by Y (t, u) = ∂3
uỸ (t, u), then

Ỹ (t, u) =
e−2t

√
t

2(4π)
3
2 sinh r

∫ 1

0
dξe−

(r−2tξ)2

4t

[

et sinh(2tξ) − 2(e−3t(1−ξ) + et−2r sinh(tξ)) sinh(tξ)

+2(e−2t(1−ξ) − 1) cosh r sinh(2tξ)+2 sinh r (cosh(2t)−cosh(2tξ))
]

(2.38)

One can then recover X from X(t, u) = 2∂2
uỸ (t, u) + ∂uV (t, u). Finally, ∂uZ(t, u) can be

determined from the first line of (2.34). The expressions for X and Z are rather lengthy,

so we will not write them here.

As in the previous section, it is reasonably straightforward to generalize these results to

find the heat kernel of a massive spin two field. The differential operator ∇2 + 2 appearing

in (2.28) is replaced by ∇2 + 2 − m2. This means that the solution for the heat kernel

described above is simply multiplied by a factor of e−m2t.

3. One-loop determinants on H3

In the previous section we computed the heat kernels for scalar, gauge and graviton ex-

citations in Euclidean Anti-de Sitter space H3. In this section we will use these results

to compute the corresponding one loop determinants in H3. These one loop determinants

simply multiply the partition function by an overall constant; they describe the renor-

malization of the cosmological constant Λ (or alternatively of Newton’s constant GN ) at

one-loop. Since these determinants can be absorbed into a local counterterm, they do not

provide any new physical information. The reader who is not interested in the computa-

tional details may therefore skip this section.

Nevertheless, the computations of this section are useful for two reasons. First, they

are illustrative of the basic technique, which will be applied in more physically interesting

settings in the next section. Second, these one-loop determinants were computed for arbi-

trary spin fields in [11] using a different technique, so this section provides a useful check

of the heat kernels computed above.

3.1 Scalar field

The one-loop contribution of a scalar field of mass m to the effective action is

S(1) = −1

2
log det

(

−∇2 +m2
)

=
1

2

∫ ∞

0

dt

t

∫

d3x
√
gKH3(t, x, x) (3.1)
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where KH3(t, x, x′) was computed in (2.9). Setting r = 0 in (2.9) and performing the

integral over x gives

S(1) =
1

2
V ol(H3)

∫

dt

t

e−(m2+1)t

(4πt)3/2
(3.2)

There are two divergences appearing in this integral. The first is an infrared divergence

coming from the integral over H3 which gives a (divergent) factor of V ol(H3). The second

is an ultraviolet divergence coming from t→ 0 behavior of the integrand. Of course, these

are both removed by a local counterterm. It is worthwhile noting that the t integral can be

defined by analytic continuation — it is just a Gamma function with a negative argument

— allowing us to remove the ultraviolet divergence. The answer is

S(1) = V ol(H3)
(m2 + 1)3/2

12π
(3.3)

This result agrees with that derived in [11].

3.2 Vector field

The trace of the heat kernel for a massless vector field is

TrKH3
vec(t) = gµν′

KH3
µν′(t, x, x)

= −3 [F (t, u) + ∂uS(t, u)]|u=0

=
e−t + 2 + 4t

(4πt)
3
2

,

(3.4)

where KH3
µν′(t, x, x′) was computed in (2.17). This result includes a contribution from the

longitudinal mode of the vector field.

To obtain the heat kernel just for the transverse components of a vector field, we must

subtract from (3.4) the heat kernel of a scalar field. For a transverse vector field of mass

m, the resulting one loop determinant is

− log det(1)∆ = V ol(H3)

∫ ∞

0

dt

t
e−m2t

(

TrKH3
vec −

e−t

(4πt)3/2

)

= V ol(H3)

∫ ∞

0

dt

t

e−m2t

(4πt)3/2
(2 + 4t) = V ol(H3)

m3 − 3m

3π
,

(3.5)

As in the previous section, we have regularized the UV divergence by analytically continuing

the t-integral. This result (3.5) agrees precisely with the one obtained in [11].

We should emphasize that (3.5) vanishes when m = 0. Thus the contribution to the

one-loop effective action for a U(1) gauge field, including the (complex) ghost, is just minus

that of a massless scalar field in (3.3).
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3.3 Graviton

The trace of the heat kernel for the symmetric traceless tensor mode φµν is

TrKH3
φµν

= gµµ′

gνν′

KH3
µν,µ′ν′(t, x, x)

= [12(G +X) + 3H + 6(u+ 1)Z]|u=0

=
e−5t

(4πt)3/2

(

1 + 2et(1 + 2t) + 2e4t(1 + 8t)
)

(3.6)

where KH3
µν,µ′ν′(t, x, x′) was computed in (2.31). This heat kernel includes contributions

from longitudinal polarizations of φµν .

The one-loop determinant for a massless transverse, symmetric 2-tensor is obtained

by subtracting from (3.6) the contribution of a massive vector with mass squared equal

to 4. The one-loop determinant for a massive transverse symmetric 2-tensor is found by

multiplying this heat kernel by a factor of e−m2t, as described in section 3. Putting this

all together, we find that the one-loop determinant for a massive, transverse symmetric

2-tensor is:

− log det(2)∆ = V ol(H3)

∫ ∞

0

dt

t
e−m2t

(

TrKH3
φµν

− e−4tTrKH3
vec

)

= V ol(H3)

∫ ∞

0

dt

t

e−(m2+1)t

(4πt)3/2
(2+16t)=

V ol(H3)

3π
(1+m2)1/2

(

m2−11
)

,

(3.7)

which again matches the result of [11].

The one-loop determinant for a linearized graviton fluctuation is found by adding

to (3.6) the contributions from the complex massive vector ghost ηµ and the trace mode

φ. The result is

S(1)
grav =

1

2
V ol(H3)

∫ ∞

0

dt

t

(

TrKH3
φµν

− 2e−4tTrKH3
vec + e−4tTrKH3

)

=
1

2
V ol(H3)

∫ ∞

0

dt

t

1

(4πt)3/2

[

2e−t(1 + 8t) − 2e−4t(1 + 2t)
]

= − 13

6π
V ol(H3).

(3.8)

Once again, we have regularized the UV divergence by analytically continuing the t-integral.

4. One-loop determinants in thermal AdS

In section 2 we described the computation of the heat kernel on H3 for scalar, gauge and

graviton fields. In this section we use these results to compute the one loop determinants

on the quotient H3/Z. As described in section 1, this can be done using the method of

images. We start by recalling briefly the geometry of thermal Anti-de Sitter space.
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4.1 The geometry of H3/Z

Our goal is to study the one-loop effective action of quantum field theory in Anti-de Sitter

space-time at finite temperature β and angular potential θ. According to the usual rules

of quantum field theory, we periodically identify

(t, φ) ∼ (t+ β, φ+ θ) (4.1)

where t is the Euclidean time coordinate and φ an angular coordinate. This means that the

canonical ensemble partition function for a given (β, θ) is equal to the Euclidean partition

function on H3/Z where the group Z is the group generated by the identification (4.1).

To describe the geometry of H3/Z, it is helpful to combine the two parameters (β, θ)

into a single complex quantity τ = 1
2π (θ + iβ). In terms of the metric (2.5) on H3, Z is

generated by an element γ of the isometry group SL(2,C) of H3:

γ(y, z) → (|q|−1y , q−1z) , (4.2)

where q = e2πiτ . Geometrically, H3/Z can be thought of as a solid torus endowed with

a metric of constant negative curvature, in the same way the H3 is viewed as a unit ball

with a metric of constant negative curvature. The parameter τ is the modulus of the T 2

boundary of H3/Z.

Later in this section we will find it useful to use a different set of coordinates on H3/Z.

We define the the polar coordinates (ρ, θ, φ) by

y = ρ sin θ , z = ρ cos θeiφ (4.3)

On H3/Z these coordinates run from 1 ≤ ρ < e2πτ2 , 0 ≤ θ < π/2 and 0 ≤ φ < 2π.

We should emphasize that H3/Z is also the geometry of the Euclidean BTZ black

hole. In particular, if we let 1
2π (θ′ + iβ′) = −1/τ , the geometry described above is the

Euclidean BTZ black hole with inverse Hawking temperature β′ and the angular potential

iθ′. So although we have used so far the language of thermal field theory, we are at the

same time computing the free energy of the BTZ black hole at one-loop. This free energy

determines the thermodynamic properties of the black hole. So the computation of the one

loop partition function gives, in particular, the one-loop correction to the BTZ entropy.

This was discussed in more detail in [2].

4.2 Scalar fields

The heat-kernel on H3/Z can be obtained from the one on H3 given in (2.9) by the method

of images:

KH3/Z(t, x, x′) =
∑

n∈Z

KH3
(

t, r(x, γnx′)
)

. (4.4)

It follows that the scalar one-loop determinant on H3/Z is

− log det∆ =

∫ ∞

0

dt

t

∫

d3x
√
gKH3/Z(t, x, x)

= vol(H3/Z)

∫ ∞

0

dt

t

e−(m2+1)t

(4πt)3/2
+
∑

n 6=0

∫ ∞

0

dt

t

∫

H3/Z

d3x
√
gKH3 (t, r(x, γnx)) .

(4.5)
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The first term was discussed in the previous section; it is divergent, and proportional to

vol(H3/Z). This term describes the renormalization of the cosmological constant at one

loop, and can be canceled by a local counterterm.

The other terms in (4.5) are more interesting. For a given n 6= 0, it is convenient to

replace the angular θ coordinate by the following r coordinate

r ≡ r(x, γnx) = arccosh
(

1 + 2 sinh2 πnτ2 + 2| sin πnτ |2 cot2 θ
)

(4.6)

which lives in the interval r ∈ [2πnτ2,∞). The measure is

d3x
√
g =

dρ

ρ
dφ dθ

cos θ

sin3 θ
=
dρ

ρ
dφ

dr sinh r

4| sin πnτ |2 . (4.7)

The integral over r in (4.5) is

∫ ∞

2πnτ2

dr sinh rKH3/Z(t, r) =
e−(m2+1)t− (2πnτ2)2

4t

4π
3
2

√
t

. (4.8)

We are left with

− log det∆ = 2

∞
∑

n=1

(2πτ2)(2π)

4| sin πnτ |2
∫ ∞

0

dt

t

e−(m2+1)t− (2πnτ2)2

4t

4π
3
2

√
t

=

∞
∑

n=1

e−2πnτ2
√

1+m2

2n| sinπnτ |2

= 2

∞
∑

n=1

|q|2nh

n|1 − qn|2 .

(4.9)

where we define h = 1
2 (1 +

√
1 +m2).

Using this, the one-loop partition function can be put in the suggestive form

Z1-loop
scalar (τ, τ̄ ) = (det ∆)−1/2 = exp

( ∞
∑

n=1

|q|2nh

n|1 − qn|2

)

= exp





∞
∑

n=1

∞
∑

ℓ,ℓ′=0

1

n
qn(ℓ+h)q̄n(ℓ′+h)





=

∞
∏

ℓ,ℓ′=0

1

1 − qℓ+hq̄ℓ′+h
.

(4.10)

This formula has a very natural interpretation. We are computing a canonical ensemble

partition function, so the answer should take the form of a trace

Z = Tr qL0 q̄L̄0 (4.11)

where L0 and L̄0 are related to energy and angular momentum

L0 = H + iJ, L̄0 = H − iJ (4.12)
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In the language of the boundary conformal field theory, L0 and L̄0 are Virasoro operators

generating scale transformations. Our answer (4.10) is clearly of the form (4.11). In fact,

it is easy to understand which states are contributing to the trace (4.11). Let us first

examine the term in the sum (4.10) with ℓ = ℓ′ = 0. In the AdS/CFT correspondence,

the scalar field φ is dual to a primary operator of weight (h, h) in the dual conformal field

theory [14]. There is a single-particle state |φ〉 found by inserting one of these operators

at the origin. There are also multi-particle states corresponding to multiple insertions of

this operator. The term in the sum (4.10) with ℓ = ℓ′ = 0 is precisely the trace over these

multi-particle states. One can also construct the Virasoro descendent Lℓ
−1L̄

ℓ′
−1|φ〉 of the

single particle state, where ℓ, ℓ′ ≥ 0; this state has conformal weight (ℓ+h, ℓ′+h). The sum

over multiple insertions of these states gives the partiton function (4.10). One might expect

higher Virasoro L−n, n > 1 to contribute to the partition sum as well. Indeed, we will see

below that this is the case, but only once one includes the graviton one loop determinant.

4.3 Vector fields

The heat-kernel for a U(1) gauge field on H3/Z can be obtained from that on H3 by the

method of images

K
H3/Z

µν′ (t, x, x′) =
∑

n∈Z

∂(γnx)ρ
′

∂xν′ KH3
µρ′

(

t, r(x, γnx′)
)

. (4.13)

The one loop determinant is

− log det∆µ
ν =

∫ ∞

0

dt

t

∑

n∈Z

∫

d3x
√
g ĝµν′

KH3
µν′(t, r(x, γ

nx)) . (4.14)

where ĝµν′ ≡ gµρ(x)∂(γnx)ν′

∂xρ . We will define

Aγ(r) := ĝµρ(z)∂µ∂ν′u = cosh r − 2 cosh(2πτ2) − 2 cos(2πτ1),

Bγ(r) := ĝµρ(z)∂µu∂ν′u = (cosh r − e2πτ2)(cosh r − e−2πτ2) (4.15)

−2 cos(2πτ1)(cosh r − cosh(2πτ2)).

Using the identities in appendix A, and making the change of variables (4.7), we get

− log det ∆µ
ν = − 3 vol(H3/Γ)

∫ ∞

0

dt

t

(

F + ∂uS
)∣

∣

∣

u=0

+2

∫ ∞

0

dt

t

∞
∑

n=1

(2πτ2)(2π)

4| sinπnτ |2
∫ ∞

2πnτ2

dr sinh r
[

Aγn(r)(F+∂uS)+Bγn(r)∂2
uS
]

.

(4.16)

One may now proceed as for the scalar by first integrating over r,

∫ ∞

2πnτ2

dr sinh r
[

Aγn(r)(F + ∂uS) +Bγn(r)∂2
uS
]

=
e−

(2πnτ2)2

4t

4π
3
2

√
t

[

2 cos(2πnτ1) + e−t
]

. (4.17)
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The last term on the right-hand side is the contribution of a massless free scalar field, and

the rest is the contribution of the transverse components of the vector field. This result

can be reproduced by applying the Selberg trace formula to the vector Laplacian.

The final result can be written as

−1

2
ln det∆ν

µ =

∞
∑

n=1

2 cos(2πnτ1) + e−2πnτ2

4n| sinπnτ |2

=
∞
∑

n=1

qn + q̄n + |q|2n

n|1 − qn|2

(4.18)

The partition function of the transverse vector field from (4.18) can be rewritten in

the more suggestive form:

Z1-loop

⊥ (τ, τ̄ ) = exp

( ∞
∑

n=1

qn + q̄n

n|1 − qn|2

)

=

∞
∏

ℓ,ℓ′=0

1

(1 − qℓ+1q̄ℓ′)(1 − qℓq̄ℓ′+1)
.

(4.19)

The U(1) gauge field partition function is given by

Z1-loop
gauge (τ, τ̄ ) =

Z1-loop

⊥ (τ, τ̄ )

Z1-loop
scalar (τ, τ̄ )

. (4.20)

As in the scalar field case described above, these formulas have a natural boundary inter-

pretation.

4.4 Gravity

The one-loop partition function of gravity is given by

Z1-loop
gravity =

det∆(1)

√
det ∆(2) det ∆(0)

(4.21)

where ∆(2), ∆(1) and ∆(0) are the kinetic operators for the traceless symmetric tensor φµν ,

the vector ghost ηµ and the Weyl mode φ as in (2.25), (2.26).

The one loop determinant for the symmetric traceless tensor φµν is

− log det∆(2) =

∫ ∞

0

dt

t

∑

n∈Z

∫

d3x
√
g ĝµµ′

ĝνν′

KH3
µν,µ′ν′(t, r(x, γ

nx))

=

∫ ∞

0

dt

t

∞
∑

n=1

2π2τ2
| sin(πnτ)|2

∫ ∞

2πnτ2

dr sinh r ĝµµ′

ĝνν′

KH3
µν,µ′ν′(t, r(x, γ

nx))(4.22)

where we have omitted the term proportional to the volume of H3/Z as before. Define

Cγ(r) = ĝµν′

ĝνν′

gµ′ν′∂µu∂νu = sinh2 r,

Jγ(r) = ĝµµ′

ĝνν′

∂µu∂ν′u∂µ′∂νu

– 17 –



J
H
E
P
0
8
(
2
0
0
8
)
0
0
7

= (cosh r − e2πτ2)(cosh r − e−2πτ2)(cosh r − 2 cosh(2πτ2))

+2(cosh r−cosh(2πτ2)) [cos(4πτ1)−2 cos(2πτ1)(cosh r−cosh(2πτ2))] , (4.23)

Lγ(r) = ĝµµ′

ĝνν′

∂µ∂ν′u∂ν∂µ′u

= (cosh r − 2 cosh(2πτ2))
2 − 4 cos(2πτ1)(cosh r − cosh(2πτ2)) + 2 cos(4πτ1).

We can then express

ĝµµ′

ĝνν′

KH3
µν,µ′ν′(t, r(z, γz)) = (A2

γ + Lγ)(G+X) + 3H + 6(u+ 1)Z (4.24)

+(AγBγ+Jγ)(∂uX+2Y )+2Cγ(X+(u+1)Y +∂uZ)+2B2
γ∂uY,

where u+ 1 = cosh r. With some effort, the integral over r in (4.22) can be evaluated, and

the result is
∫ ∞

2πnτ2

dr sinh r ĝµµ′

ĝνν′

KH3
µν,µ′ν′(t, r(z, γ

nz))

=
e−

(2πnτ2)2

4t

2π
3
2

√
t

[

e−t cos(4πnτ1)+e
−4t cos(2πnτ1)+

e−5t

2

]

. (4.25)

The contribution from the vector ghost and the Weyl mode can be obtained analogously

to the vector and scalar field cases discussed before (with appropriate mass terms)

−e
− (2πτ2)2

4t

2π
3
2

√
t

[

2e−4t cos(2πτ1) + e−5t
]

+
e−

(2πτ2)2

4t
−5t

4π
3
2

√
t

. (4.26)

The full 1-loop free energy is given by

lnZ1-loop
gravity = −1

2
ln det∆(2) + ln det ∆(1) − 1

2
ln det ∆(0)

=

∫ ∞

0

dt

t

∞
∑

n=1

2π2τ2
| sin(πnτ)|2

e−
(2πnτ2)2

4t

4π
3
2

√
t

[

e−t cos(4πnτ1) − e−4t cos(2πnτ1)
]

=
∞
∑

n=1

q2n + q̄2n − |q|2n(qn + q̄n)

n|1 − qn|2

=

∞
∑

n=1

1

n

(

q2n

1 − qn
+

q̄2n

1 − q̄n

)

= −
∞
∑

m=2

ln |1 − qm|2. (4.27)

Or,

Z1-loop
gravity(τ, τ̄ ) =

∞
∏

m=2

1

|1 − qm|2 . (4.28)

This one loop contribution is in addition to the tree level gravity partition function,

which is found by computing the regularized volume of H3/Z. This tree level contribution

is |q|−2k, as described in e.g. [14]. The full gravity partition function is therefore

Zgravity(τ, τ̄ ) = |q|−2k
∞
∏

m=2

1

|1 − qm|2 (4.29)
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This formula has a very natural physical interpretation. It has the form of a trace

Z = Tr qL0 q̄L̄0

over an irreducible representation of the Virasoro algebra. This representation con-

tains a ground state |0〉 of weight L0|0〉 = −k|0〉, along with its Virasoro descendants

L−n1 . . . L−ni
|0〉. This result is not surprising given the observation of Brown & Hen-

neaux [5] that, with appropriate boundary conditions, the symmetry group relevant to

AdS3 gravity is generated by the Virasoro algebra. Our computation may therefore be

viewed as an explicit check that quantum gravity in AdS3 does indeed have the structure

of a conformal field theory. A detailed derivation of the partition function (4.29) from

the Brown-Henneaux construction was given in [2]. As described in [2], these symmetry

arguments indicate that the expression (4.29) for the gravity partition function is in fact

one-loop exact.

5. Hyperbolic manifolds with higher genus conformal boundary

In this section we will consider more general quotients of H3 by some discrete subgroup Γ of

the isometry group PSL(2,C) of H3. We will use the heat kernel of section 2 to compute the

one-loop contribution to the gravity partition function, generalizing the results for H3/Z

described in the previous section. The goal of these computations is to compute the one-

loop partition function of gravity on a hyperbolic 3-manifold whose conformal boundary

is a genus g Riemann surface. We will start by describing a few salient features of the

quotients H3/Γ.

5.1 The geometry of H3/Γ

We are interested in quotients H3/Γ whose conformal boundary is a Riemann surface of

genus g. Each such geometry gives a saddle point contribution to the partition function of

the quantum gravity path integral at fixed genus.

We will start by considering 3-manifolds whose boundary is a genus 1 surface, T 2.

There are two types of smooth hyperbolic manifolds with T 2 boundary. The first is the

solid torus H3/Z described in section 4. The second is the quotient H3/Z×Z. In terms of the

(y, z) coordinates of equation (2.5), H3/Z×Z is given by the identifications z ∼ z+1 ∼ z+τ .

From the form of the metric (2.5) it is apparent that H3/Z×Z has a T 2 conformal boundary

at y = 0, as well as a cusp at y → ∞. In fact, this cusp renders this geometry unstable;

one can show, by computing the heat-kernel on H3/Z × Z, that the spectrum of linearized

metric perturbations on H3/Z×Z has a negative mode. For this reason, we will not consider

geometries with cusps in what follows.

The geometries H3/Γ with conformal boundary of genus g ≥ 2 are considerably more

complicated. The simplest class of such manifolds are genus g handlebodies endowed

with metrics of constant negative curvature. In this case the group Γ is freely generated

by g loxodromic elements of PSL(2,C). These handlebodies may be thought of as the

higher genus generatizations of the BTZ black hole [16, 18]. These 3-manifolds often
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have interesting Lorentzian continuations, which describe multiple asymptotic AdS regions

connected by wormholes of complicated topology.

There are also non-handlebodies 3-manifolds, which have genus g ≥ 2 conformal bound-

ary. The geometry of these 3-manifolds is somewhat more complex (see [15, 4] for some

examples). These non-handlebodies also have interesting Lorentzian continuations, which

include the closed FRW cosmologies of [19, 20].

In this section we will consider smooth hyperbolic manifolds M = H3/Γ without cusps.

This means that the group Γ will contain only loxodromic elements, and will not have a

subgroup isomorphic to Z × Z.

5.2 Heat kernels

We will now compute the heat kernel of a free field on H3/Γ. Using the method of images,

this is related to the heat kernel of a free field on H3 by

KH3/Γ(t, x, x′) =
∑

γ∈Γ

KH3(t, r(x, γx′)) (5.1)

This formula applies to scalar, gauge or graviton fields (for the latter two cases we have

omitted the index structure, see sections 4.3 and 4.4 for details). We will denote by F a

fundamental region for Γ on H3. Then the one-loop determinant is given by

− ln det∆ =

∫ ∞

0

dt

t

∑

γ∈Γ

∫

F
d3x

√
gKH3(t, r(x, γx))

=

∫ ∞

0

dt

t

∑

γ∈P

∑

σ∈Iγ

∞
∑

n=1

∫

F
d3x

√
gKH3(t, r(x, σ−1γnσx))

In the second line we have separated the sum over Γ into three parts. Here Iγ is the set

of σ ∈ Γ such that σ−1γσ give all the distinct elements in the conjugacy class of γ, and P
denotes a set of representatives of the primitive conjugacy classes of Γ (an element γ ∈ Γ

is primitive if γ 6= βn for any any element β ∈ Γ and n > 1). We may rewrite this as

− ln det∆ =

∫ ∞

0

dt

t

∑

γ∈P

∑

σ∈Iγ

∞
∑

n=1

∫

σF
d3x

√
gKH3(t, r(x, γnx))

=

∫ ∞

0

dt

t

∑

γ∈P

∞
∑

n=1

∫

Fγ

d3x
√
gKH3(t, r(x, γnx)) (5.2)

where Fγ is a fundamental domain for the group Z generated by the element γ. In the last

step of (5.2), we have used the fact that
⋃

σ∈Iγ
σF is a fundamental domain for γ.6 As in

6To see this, we need to show that (1) for any x ∈
S

σ∈Iγ
σF and n 6= 0, γnx 6∈

S

σ∈Iγ
σF , and (2) for

any point y ∈ H3, there exists some x ∈
S

σ∈Iγ
σF and n ∈ Z such that y = γnx. (1) follows from the

definition of Iγ . To show (2), first note that there is some α ∈ F such that y = gα for an element g ∈ Γ. It

follows from the definition of Iγ that g−1γg = σ−1γσ for some σ ∈ Iγ . Equivalently, gσ−1 commutes with

γ. Since Γ does not contain Z × Z, it follows that gσ−1 = γn for some n, i.e. y = γnσα = γnx.
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section 4, we have omitted the term proportional to the volume of H3/Γ, corresponding to

γ = 1. This term describes the renormalization of the cosmological constant at one loop.

We may now use the fact that, aside from the sum over P, equation (5.2) is identical to

equation (4.5) for the partition function on H3/Z. The implies that the one-loop partition

function on H3/Γ is given by

ZH3/Γ =
∏

γ∈P

(

ZH3/〈γ〉
) 1

2
(5.3)

Here ZH3/〈γ〉 is the one-loop partition function on the solid torus H3/Z, where Z = 〈γ〉 is

the free group generated by γ. To evaluate ZH/〈γ〉 explicitly, it is useful to use a basis where

the element γ ∈ PSL(2,C) is diagonal: γ =

(

q
1/2
γ 0

0 q
−1/2
γ

)

, with |qγ | < 1. Then ZH/〈γ〉 is

just the one-loop partition function ZH3/Z computed in section 4, evaluated at the point qγ .

This argument applies to vector and graviton fields as well as to scalar fields. In the

scalar and vector cases, our result can be reproduced by the Selberg trace formula applied

to the scalar and vector Laplacians. In the gravity case, we arrive at the following formula

for the one-loop partition function on H3/Γ,

Z
H3/Γ
gravity =

∏

γ∈P

∞
∏

m=2

1

|1 − qm
γ | . (5.4)

This is precisely the expression anticipated in [3]. When M = H3/Γ is a solid torus, Γ ≃ Z,

and P consists of the generator of Γ and its inverse. In this case (5.4) reproduces (4.28).

As an example of the application of this formula, it is instructive to consider the case

where Γ is a Fuchsian group, i.e. Γ ⊂ SL(2,R) ⊂ SL(2,C). In this case M = H3/Γ has

two conformal boundary components, Σ and Σ, which are Riemann surfaces with opposite

complex structures.7 In this case, the gravity partition function can be written as

Z
H3/Γ
gravity =

∏

γ∈P

∞
∏

m=2

1

1 − e−mℓ(γ)
. (5.5)

where P can be equivalently thought of as the set of oriented primitive geodesics on the

Riemann surface Σ (with hyperbolic metric), and ℓ(γ) is the length of the geodesic corre-

sponding to γ. It is well known that the number of primitive geodesics of length ≤ L grows

like eL/L (see e.g. [17]). It follows that

lnZ
H3/Γ
gravity =

∑

γ∈P

∞
∑

m=2

ln(1 − e−mℓ(γ))

< C1

∫ ∞

L0

dL
eL

L

∞
∑

m=2

ln(1 − e−mL) + C2 <∞
(5.6)

7When Σ admits an anti-holomorphic fixed point free involution, we can further take the quotient of M

by a Z2 to obtain a non-handlebody with a single connected conformal boundary.
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for some positive constants C1, C2, L0, i.e. the infinite product in (5.4) converges.8

It is worth noting that the higher genus partition functions discussed above encode

in principle the correlation functions of all operators in the boundary CFT. Unlike the

H3/Z case described in section 4, there is no reason why higher-loop contributions to these

partition function should vanish. So we expect that the results described above will be

corrected at higher loop order. When M is a handlebody, a method to obtain the exact

all-loop expression has been proposed in [3] (and explicit results were given for genus two).

It would be interesting if these higher loop contributions could be computed explicitly in

gravity perturbation theory.
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A. Bitensor identities on H3

In this appendix we collect a few useful identities that are used in the derivation of heat

kernels on H3. Reference [6] contains a more lengthy discussion of many of these identities,

which were used to construct gauge and graviton two point functions in Anti-de Sitter space.

We start by noting that the chordal distance u(x, x′) defined in equation (2.7) obeys

∇µ∇µu = 3(u+ 1)

∇µu∇µu = u(u+ 2)

∇µ∇νu = gµν(1 + u)

∇µu∇µ∇ν∇ν′u = ∇νu∇ν′u

∇µu∇µ∇ν′u = (1 + u)∇ν′u

∇µ∇µ′u∇µ∇ν′u = gµ′ν′ + ∇µ′u∇ν′u

∇µ∇ν∇ν′u = gµν∇ν′u (A.1)

The gauge and graviton heat kernel are bitensors constructed out of u(x, x′). There

are two linearly independent (1, 1) bitensors that can be constructed out of u:

W 1
µµ′ = ∇µu∇µ′u , W 2

µµ′ = ∇µ∇µ′u (A.2)

The gauge field heat kernel can be written as a linear combination

Kµν′(t, x, x′) =

2
∑

a=1

Ka(t, u)W
a
µν′ (A.3)

8Note that had the product over m in (5.4) started from m = 1 (analogously to the formula for the

classical regularized action of a handlebody in [3, 4]), the product over γ ∈ P would diverge for Fuchsian Γ.
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However, the computations are considerably simpler if one writes the heat kernel in the

form (2.17) instead. It is straightforward to demonstrate that the decomposition (2.17)

is equivalent to the form described above; the F and S of equation (2.17) are uniquely

determined by the W a defined above. In writing down the heat kernel equation (2.18) we

use the identities
[

∇2,∇µ

]

f = −2∇µf ,
[

∇2,∇µ

]

υν = 2gµν∇ρυρ − 2∇µυν − 2∇νυµ ,
(A.4)

for a scalar function f and a vector υµ.

To study the graviton propagator Kµν,µ′ν′ , we note that one can construct six, linearly

independent rank-four, symmetric bilinear tensors from u(x, x′)

T 1
µνµ′ν′ = gµνgµ′ν′

T 2
µνµ′ν′ = ∇µu∇νu∇µ′u∇ν′u

T 3
µνµ′ν′ = ∇µ∇(µ′u∇ν′)∇νu

T 4
µνµ′ν′ = ∇(νu∇µ)∇(µ′u∇ν′)u

T 5
µνµ′ν′ = gµν∇µ′u∇ν′u

T 6
µνµ′ν′ = ∇µu∇νugµ′ν′ (A.5)

These are all symmetric under µ ↔ ν and µ′ ↔ ν ′. Under x ↔ x′, the first four tensors

are invariant, while T 5 ↔ T 6. The first four tensors, along with T 5 + T 6, form a linearly

independent basis of the space of symmetric, bilinear tensors invariant under x ↔ x′. We

may therefore write the graviton heat kernel as the sum

KH3
µνµ′ν′ =

6
∑

i=1

KiT
i
µνµ′ν′ (A.6)

where i runs from 1 to 6. Since the heat kernel is invariant under x → x′ it follows that

K5 = K6. However, the computations are considerably simpler if one writes the heat

kernel in the form (2.31) instead. It is straightforward but tedious to demonstrate that

the decomposition (2.31) is equivalent to the form described above. In writing down the

equation of motion (2.33) we again used the identities (A.4).
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